
J. Fluid Mech. (2008), vol. 605, pp. 59–78. c© 2008 Cambridge University Press

doi:10.1017/S0022112008001456 Printed in the United Kingdom

59

Moving contact line on chemically patterned
surfaces

XIAO-PING WANG1, T IEZHENG QIAN1

AND PING SHENG2

1Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay,
Kowloon, Hong Kong, China

2Department of Physics and Institute of Nano Science and Technology, The Hong Kong University
of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

(Received 20 November 2007 and in revised form 29 February 2008)

We simulate the moving contact line in two-dimensional chemically patterned channels
using a diffuse-interface model with the generalized Navier boundary condition.
The motion of the fluid–fluid interface in confined immiscible two-phase flows is
modulated by the chemical pattern on the top and bottom surfaces, leading to
a stick–slip behaviour of the contact line. The extra dissipation induced by this
oscillatory contact-line motion is significant and increases rapidly with the wettability
contrast of the pattern. A critical value of the wettability contrast is identified above
which the effect of diffusion becomes important, leading to the interesting behaviour
of fluid–fluid interface breaking, with the transport of the non-wetting fluid being
assisted and mediated by rapid diffusion through the wetting fluid. Near the critical
value, the time-averaged extra dissipation scales as U , the displacement velocity. By
decreasing the period of the pattern, we show the solid surface to be characterized
by an effective contact angle whose value depends on the material characteristics and
composition of the patterned surfaces.

1. Introduction
The question of how immiscible two-phase fluids flow over rough surfaces or

chemically patterned surfaces has long been of interest to academic and industrial
communities. In order to exploit the potential utility of microfluidic devices, it is
important to develop a fundamental understanding of the behaviour for fluids flowing
over patterned surfaces. Modelling of immiscible two-phase flows over solid surface
has eluded accurate continuum description for many decades. At the heart of this
problem is the boundary condition for the moving contact line (MCL), where the
fluid–fluid interface intersects the solid wall (Huh & Scriven 1971; Dussan V. &
Davis 1974; Dussan V. 1979; de Gennes 1985). It has been shown by Dussan V.
& Davis (1974) that under usual hydrodynamic assumptions, namely incompressible
Newtonian fluids, the no-slip boundary condition, and smooth rigid solid walls, the
velocity field is multi-valued at the MCL, and the tangential force exerted by the
fluids on the wall in the vicinity of the MCL is unbounded, implying an infinite rate
of viscous dissipation. Numerous models have been proposed over the years, aiming
to resolve this classical hydrodynamic problem. An incomplete list includes the kinetic
adsorption/desorption model by Blake & Haynes (1969), the slip models by Hocking
(1977), Huh & Mason (1977), and Zhou & Sheng (1990), and the diffuse-interface
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models by Seppecher (1996), Jacqmin (2000), Chen, Jasnow & Vinals (2000), Pismen
& Pomeau (2000) and Briant & Yeomans (2004). It is interesting to note that, while
the divergence of viscous dissipation can be removed by allowing some slip in the
vicinity of the MCL, the diffuse-interface models provide a different resolution. That
is, an effective interfacial slip can be maintained by diffusive transport even if the
no-slip boundary condition is still satisfied.

The recent discovery of the generalized Navier boundary condition (GNBC) by
Qian, Wang & Sheng (2003) has resolved the MCL conundrum for immiscible two-
phase flows over homogeneous surfaces. The GNBC states that the slip velocity is
proportional to the total tangential stress — the sum of the viscous stress and the
uncompensated Young stress; the latter arises from the deviation of the fluid–fluid
interface from its static configuration. By combining the GNBC with the Cahn–
Hilliard (CH) diffuse-interface model (Cahn & Hilliard 1958), we have obtained
a continuum description for the contact line hydrodynamics in immiscible two-
phase flows. Our continuum calculations based on the new slip boundary condition
quantitatively reproduce the molecular dynamics (MD) simulation results (Qian,
Wang & Sheng 2003, 2004). It is worth emphasizing that, by using a diffuse-
interface model, the stress singularity can be removed by either diffusion or slip,
or both, depending on the physical system under investigation. For the fluid systems
in our MD simulations, the slip is the dominant mechanism. More recently, we
have presented a variational derivation of the GNBC through the principle of
minimum energy dissipation (Qian, Wang & Sheng 2006), formulated by Onsager for
small perturbations away from equilibrium (Onsager 1931a,b; Onsager & Machlup
1953). This derivation reveals that the slip boundary condition at the fluid–solid
interface is consistent with the general principle of irreversible thermodynamic
processes.

Numerous studies have shown that the behaviour of a binary mixture is significantly
affected by the wetting properties of the underlying surface pattern. Consider a surface
patterned with hydrophilic and hydrophobic domains in contact with a liquid (e.g.
water); the corresponding interface will have a position-dependent free energy that
reflects the underlying surface pattern. The liquid wets the hydrophilic domains but
dewets the hydrophobic domains. As a result, the surface pattern will modulate the
shape of the liquid layer. The morphology of the liquid microstructures depends
sensitively on parameters such as the dimensions and contact angles of the pattern
and may undergo morphological transition between different states (Gau et al. 1999;
Darhuber et al. 2000). The dynamics of two-phase fluids or drops is even more
significantly affected by the geometric and physical properties of the chemically
patterned surfaces. An experimental investigation was performed by Cubaud &
Fermigier (2004) on advancing contact lines of large drops spreading on chemically
patterned surfaces with different surface geometries. Experiments and numerical
simulations were performed by Kusumaatmaja et al. (2006) exploring the behaviour
of liquid drops moving across a surface patterned with hydrophobic and hydrophilic
stripes. It was observed that the period of the pattern is reflected in the time variation
of the drop velocity as well as drop shape deviation (from spherical). Simulations
by Kuksenok et al. (2003) have shown that when a phase-separated binary fluid is
driven to flow past chemically patterned surfaces in a microchannel, the fluid exhibits
unique morphological instabilities characterized by periodic formation of mono-
disperse droplets. We note that most of the continuum simulations for dynamics of
two-phase fluids on chemically patterned surfaces have been based on models with
no-slip boundary conditions.
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In this paper, we extend the GNBC-based continuum calculations to two-
dimensional chemically patterned channels, and present a numerical study of the
effects of the surface pattern on the MCL and moving interface. In particular, we
are interested in how the motion of the contact line and interface is determined
by the interplay between the driving velocity and the chemical (contact angles)
and geometrical characteristics of the patterned surfaces. Our simulations show that
oscillatory (stick–slip) motion of the fluid–fluid interface occurs on the chemical
patterned surface. The extra dissipation induced by this oscillatory contact-line motion
is due to the capillary waves generated at the fluid–fluid interface (Zhou & Sheng
1990) and has certain universal features. The scaling of the extra dissipation (when
time averaged) with the displacement velocity U is found to be ∼ U . We also show
that by decreasing the period of the pattern, the solid surface can be characterized
by an effective contact angle whose value depends on the material characteristics
and composition of the patterned surface. If the wettability contrast of the patterned
surface is strong enough, the effect of diffusion becomes important, leading to the
interesting behaviour of fluid–fluid interface breaking, with the transport of the non-
wetting fluid being assisted and mediated by rapid diffusion through the wetting fluid.
As a consequence, a droplet appears to ‘jump’ across the non-wetting section of the
pattern through diffusion.

The paper is organized as follows. In §2 we describe the diffuse-interface model, the
generalized Navier boundary condition (GNBC) and their numerical implementation
on chemically patterned surfaces. Numerical results and a discussion are presented in
§3. The paper concludes with a few remarks in §4.

2. The diffuse-interface model
2.1. The Cahn–Hilliard Navier–Stokes equations with the GNBC

To describe the continuum model for contact-line motion, we start from the CH free
energy functional (Cahn & Hilliard 1958):

F [φ(r)] =

∫
dr

[
K

2
(∇φ)2 + f (φ)

]
, (2.1)

where φ(r) is the phase field measuring the local composition (relative concentration)
of the two-phase fluid, and f (φ) is a function of the local composition, given by
f (φ) = −rφ2/2 + uφ4/4 which has a double-well structure for modelling the fluid
components’ immiscibility. A diffuse interface between the two equilibrium phases
φ± = ±

√
r/u (at which df/dφ = 0 and d2f/dφ2 > 0) can be stabilized by the

CH free energy functional. Here the parameters K , r , and u can be determined
from the two equilibrium phases φ± = ±

√
r/u (= ±1 here), the interfacial tension

γ = 2
√

2Krφ2
±/3, and the characteristic length scale ξ =

√
K/r measurable in the

static interfacial profile (the interfacial thickness is of the same order of magnitude
as ξ ). The two coupled equations of motion are the convection–diffusion equation for
the phase field and the Navier–Stokes equation in the presence of the capillary force
density:

∂φ

∂t
+ v · ∇φ = M∇2μ, (2.2)

ρ

[
∂v

∂t
+ (v · ∇) v

]
= −∇p + ∇ · σ v + μ∇φ + f e, (2.3)
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together with the incompressibility condition ∇ · v = 0. Here ∇2 ≡ ∇ · ∇ denotes the
Laplace operator, M is the mobility coefficient, μ = −K∇2φ−rφ+uφ3 is the chemical
potential defined from the CH free energy functional F according to μ = δF/δφ,
ρ is the mass density of the fluid, p is the pressure, σ v = η

[
(∇v) + (∇v)T

]
is the

Newtonian viscous stress tensor with η being the viscosity, μ∇φ is the capillary force
density, and f e is the external force. The boundary conditions at the solid surface
are the impermeability condition ∂nμ = 0 (which requires the normal (n) component
of the diffusive current J = −M∇μ to vanish at the solid surface) and vn = 0, the
relaxational equation for φ at the solid surface:

∂φ

∂t
+ vτ ∂τφ = −Γ L(φ), (2.4)

and the slip boundary condition governing the tangential momentum transport across
the fluid–solid interface:

β(φ)vslip
τ = −η(∂nvτ + ∂τvn) + L(φ)∂τφ. (2.5)

Here τ denotes the direction tangent to the solid surface (for two-dimensional flows),
n denotes the outward surface normal, Γ is a positive phenomenological parameter,
L(φ) = K∂nφ + ∂γf s(φ)/∂φ in which γf s(φ) is a function of the local composition at
the solid surface measuring the fluid–solid interfacial free energy per unit area, β(φ)
is the slip coefficient which may depend on the local composition at the solid surface,
vslip

τ is the slip velocity, defined as the tangential velocity of the fluid at the solid
surface measured relative to the (moving) wall, and L(φ)∂τφ is the uncompensated
Young stress. Physically, L(φ) measures the deviation from equilibrium at the solid
surface. Therefore, equation (2.4) means that the material derivative of φ at the solid
surface is proportional to the deviation of L(φ) from its equilibrium value zero, and
the minus sign ensures this evolution to be relaxational. Equation (2.5) governs the
fluid slip at the solid surface. It has been shown that the boundary conditions (2.4)
and (2.5) may be derived from Onsager’s variational principal as a consistent pair
(Qian et al. 2006). Hence we denote them together as the GNBC.

We use γf s(φ) = (�γf s/2) sin(πφ/2) which is a smooth interpolation from γf s(φ−) =
−�γf s/2 to γf s(φ+) = �γf s/2. Here �γf s denotes the change of γf s(φ) from one
equilibrium phase of φ− = −1 to the other equilibrium phase of φ+ = 1, i.e. �γf s =
γf s(φ+) − γf s(φ−). According to the Young equation for the static contact angle θs ,
γf s(φ+) + γ cos θs = γf s(φ−), we have �γf s = −γ cos θs . It can be shown that in the
sharp interface limit (Chella & Vinals 1996; Qian et al. 2003), the uncompensated
Young stress satisfies ∫

int

dτ [L(φ)∂τφ] = γ (cos θd − cos θs), (2.6)

where
∫

int
dτ denotes the integration across the fluid–fluid interface along the τ -

direction and θd is the dynamic contact angle.
Note that our choice of γf s(φ) makes ∂γf s(φ)/∂φ vanish at the two equilibrium

phases φ± = ±
√

r/u = ±1. As a consequence, far away from the contact line and
deep in the single-phase region, the phase field becomes a constant in space and time,
given by φ(r, t) = φ+ or φ(r, t) = φ−, which satisfies dφ/dt ≡ ∂φ/∂t + v·∇φ = 0,
μ = −K∇2φ − rφ + uφ3 = 0, and L(φ) = K∂nφ + ∂γf s(φ)/∂φ = 0 at the solid
surface. This leads to the disappearance of the transition layer at the solid surface,
which in general arises from the competition between the free energies at the surface
(represented by γf s(φ)) and in the bulk (represented by F [φ]). It follows that the
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excess free energy (per unit area of the solid surface) far from the contact line can
be simply given by γf s(φ±) defined at the surface without integrating across the
transition layer along the surface normal, and hence the Young equation can be
written as γf s(φ+) + γ cos θs = γf s(φ−) with the static contact angle θs defined at the
surface as well.

2.2. Modelling the immiscible two-phase flows at patterned surfaces

We consider a binary fluid flowing through a two-dimensional channel in which the
top and bottom surfaces are chemically patterned. The binary fluid consists of two
immiscible components A and B. By immiscible components we mean that a (diffuse)
interface can be stabilized between them while spatial and temporal variations of the
phase field are allowed and governed by the model described in §2.1. The top and
bottom surfaces are patterned by A-type and B-type stripes, with the A component
more attracted by the A-type stripe while the B component is more attracted by
the B-type stripe (figure 1). The chemical properties of each stripe are specified by
the static contact angle (defined on the side of the B component) and the two slip
lengths for the two components. We use θA

s to denote the static contact angle on the
A-type stripe, lAsA and lAsB to denote the slip lengths of the A and B components on
the A-type stripe, and θB

s , lBsA, and lBsB to denote the corresponding parameters on the
B-type stripe. We choose θA

s > 90◦, θB
s < 90◦, lAsA < lAsB , and lBsA > lBsB , considering that

a large slip length is realized at a non-wetting fluid–solid interface (e.g. lAsB and lBsA)
(Barrat & Bocquet 1999). The geometric structure of the pattern is specified by the
period of the pattern λ and the widths of the A-type and B-type stripes a and b with
λ = a + b. We choose the coordinate system in which the solid surface extends along
the x-direction, i.e. τ = x, and the outward surface normal n is in the −z-direction
on the bottom surface and in the z-direction on the top surface.

The dimensionless Cahn–Hilliard–Navier–Stokes equations are

∂φ

∂t
+ v·∇φ = Ld∇2(−∇2φ − φ + φ3), (2.7)

R
[
∂v

∂t
+ (v·∇) v

]
= −∇p + ∇2v + B(−∇2φ − φ + φ3)∇φ. (2.8)

The dimensionless GNBC boundary conditions are

∂φ

∂t
+ vx∂xφ = −Vs

[
∂nφ −

√
2

3
cos θssγ (φ)

]
(2.9)

for the relaxation of φ at the fluid–solid interface, and the friction law

[Ls(φ)]−1 vslip
x = B

[
∂nφ −

√
2

3
cos θssγ (φ)

]
∂xφ − ∂nvx (2.10)

for the fluid slip, with sγ (φ) = (π/2) cos(πφ/2) and θs = θA
s or θB

s . Five dimensionless
parameters appear in the above equations. They are (i) Ld = Mr/V ξ , which is the
ratio of the diffusion length Mr/V to ξ , (ii) R = ρV ξ/η, (iii) B = r2ξ/uηV =
3γ /2

√
2ηV , which is inversely proportional to the capillary number Ca = ηV/γ ,

(iv) Vs = KΓ /V , which is the ratio of KΓ (of velocity dimension) to V , and
(v) Ls(φ) = η/β(φ)ξ , which is the ratio of the slip length ls(φ) = η/β(φ) to ξ .
Here β(φ) = (1 − φ)β1/2 + (1 + φ)β2/2 is the weight-averaged slip coefficient, with
β1 = η/lAsA and β2 = η/lAsB on the A-type stripe or β1 = η/lBsA and β2 = η/lBsB on the



64 X.-P. Wang, T. Qian and P. Sheng

b a
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A-type B-type

λ

Figure 1. A schematic diagram showing a patterned surface with alternating stripes of
different surface properties, represented by the static contact angle and the two slip lengths.

(b)(a)

A B A B

Figure 2. The stationary profiles of the dynamic interface (with A fluid on the left and B
fluid on the right) in channels with homogeneous surfaces. The flow is from right to left with
the averaged velocity of U = −0.2. (a) Top and bottom surfaces are both A-type. (b) Top and
bottom surfaces are both B-type.

B-type stripe. In our calculations, the values of the first four parameters are taken
from those determined through MD simulations (Qian et al. 2003). They are Ld = 5,
R = 0.03, B = 12, and Vs = 5, with the length scale ξ = 0.33σ and the velocity
scale V = 0.25

√
ε/m (in which ε and σ are the energy and length scales in the

Lennard–Jones potential for fluid molecules and m is the fluid molecular mass). We
use the above values of ξ and V as the length and velocity units. The dimensionless
boundary conditions (2.9) and (2.10) are obtained from equations (2.4) and (2.5), with
γf s(φ) = (�γf s/2) sin(πφ/2), �γf s = −γ cos θs , and the dimensionless value 2

√
2/3

for γ .

3. Results and discussion
We simulate an immiscible two-phase fluid flowing with an average velocity U

through a channel with chemically patterned top and bottom surfaces. In most of
our simulations, the length of the channel is Lx = 100 and the height of the channel
is Lz = 40. The initial conditions for the phase field φ and the velocity field vx, vz are
chosen to be

φ(x, z, 0) = tanh((x − x0)/
√

2)

vx(x, z, 0) =
6U

6 ls/Lz + 1
(ls/Lz + z/Lz − (z/Lz)

2)

vz(x, z, 0) = 0

where x0 is the initial interface position. The initial velocity field is a Poiseuille-type
quadratic profile in z, with an average velocity U , which is consistent with the slip
boundary condition at the top and bottom boundaries. The boundary conditions (2.4)
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and (2.5) are applied on the top and bottom solid surfaces. At the left and right
boundaries, the velocity fields are specified as the above quadratic profiles and φ is
fixed to be −1 or 1, compatible with the fact that far away from the contact line
and deep in the single-phase region, the phase field becomes a constant in space
and time, given by φ(r, t) = −1 or φ(r, t) = 1. During the simulations, the position
of the interface is determined by the zero level set of the function φ. We use a
pressure–Poisson solver for the Navier–Stokes equation and a semi-implicit scheme
for the Cahn–Hilliard equation. The details of the numerical scheme can be found in
Qian et al. (2003).

3.1. Stick–slip motion and capillary waves

For homogeneous surfaces, the moving interface can maintain a stationary shape with
a dynamical contact angle slightly deviating from the static contact angle θ . Figure 2(a)
shows the stationary dynamic interface profile in a channel with homogeneous A-type
surfaces and figure 2(b) shows that in a channel with homogeneous B-type surfaces. In
all of the simulations, the A fluid is always on the left (and B fluid on the right) of the
interface. When the solid surfaces are patterned, the moving interface has to switch,
completely or incompletely, between the two different interface profiles for different
homogeneous surfaces, leading to a stick–slip motion of the contact line. We plot two
time sequences for the interface profile and contact point velocity in figure 3 where we
use θA

s = 102.4◦, lAsA = 3.8, lAsB = 10 for the A-type stripe and θB
s = 180◦ − θA

s = 77.6◦,
lBsA = 10, lBsB = 3.8 for the B-type stripe. Note that the condition θA

s + θB
s = 180◦ is

not necessary since θA
s and θB

s are considered independent. Rather, it represents a
convenient choice of parameter values.

In the first case (figure 3a), the interface starts from the A-type (red) region and
moves to the left with the average velocity U = −0.2. As the interface reaches the
B-type (green) region, its profile is rendered energetically unfavourable by the new
stripe and the capillary force takes over in adjusting the interface profile. The contact
line undergoes an acceleration followed by an deceleration, quickly slipping to the
B-type stripe. The maximum slip velocity is about −0.81 which is four times the
magnitude of U . In the B-type region the interface continues to move with the steady
velocity U = −0.2 until it reaches the next A-type (red) region. The contact line then
slows down (with minimum velocity −0.06), accompanying the adjustment of the
interface profile due to the switch of the contact angle. After completing the profile
adjustment, the interface continues to move with the steady velocity U = −0.2. In the
second case (figure 3b), the surface pattern period is decreased. The above process is
seen to repeat as the interface moves through the channel. Figure 4 shows the motion
of the interface in the co-moving frame (with a constant velocity U = −0.2) where
the contact line oscillates around a vertical line.

3.2. Interface breaking and minimum energy dissipation

We now increase the wettability contrast r defined as the ratio of the static contact
angles of the A-type and B-type surfaces, i.e. r = θA

s /θB
s , and study how the increased

contrast affects the interface motion. We choose θA
s = 152.4◦ for the A-type stripe

and θB
s = 27.6◦ for the B-type stripe. The values for the four slip lengths remain the

same as before. We observe a strong deformation of the interface when the contact
line crosses the boundaries between different stripes. This leads to the interesting
phenomena of interface breaking and contact line jumping as shown in figure 5.
An enlarged view in figure 6 shows the interface immediately before and after its
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Figure 3. Two time sequences, with different surface pattern period, for the interface profile
and contact point velocity. The fluid is moving from right to left in each case. The fluid on
the left is the A component and that on the right is the B component. As the interface moves
away from the domain of the A-type stripe and enters into the domain of the B-type stripe,
the contact line velocity increases rapidly, in conjunction with the adjustment of the interface
profile. The opposite occurs as the interface crosses the stripe boundary from the B-type stripe
to the A-type stripe, and the contact line velocity decreases to almost zero.
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Figure 4. Motion of the interface in the co-moving frame, in a time sequence from top left
to right, then from bottom left to right. The last frame repeats the first one.

breaking. This is similar to the jump phenomena observed for the moving contact
line on undulating surfaces (Luo et al. 2006). The mechanism here is interesting. As
seen in figure 6, breaking of the interface is directly associated with diffusion of the
red fluid (the B component of the binary fluid) in space. This diffusion occurs above
the A-type stripe which is now strongly non-wetting to the red fluid (with θA

s close
to 180◦). Unable to fully displace the blue fluid (the A component) that is strongly
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s = 152.4◦ for the A-type stripe and
θB
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the B component is coloured red, to facilitate the visual contrast as well as the diffuse interface
between the two.
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Figure 6. An enlarged view of the interface immediately before and after breaking. The red
fluid (the B component) on the right prefers the green section (the B-type stripe) of the
patterned surface, while the blue fluid (the A component) on the left is strongly attracted to
the red section (the A-type stripe). Hence to minimize the total energy dissipation the red fluid
avoids the red section of the patterned surface by diffusing across and over the high-energy
section.
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attracted to the A-type stripe, the red fluid thus penetrates through the blue fluid
via diffusion, and seems to ‘grow’ out of nowhere onto the next wetting region (the
B-type stripe). Visually it thus appears as if the contact line tunnels, or jumps.

The phenomena of interface breaking can be understood from the principle of
minimum energy dissipation, the statistical mechanical basis of the GNBC. The
total rate of energy dissipation Rtotal for immiscible two-phase fluid flowing past the
patterned surfaces consists of four parts, contributed by the four physically distinct
sources of dissipation the shear viscosity in the bulk Rv , the fluid slip at the solid
surface Rs , the phase field diffusion in the bulk Rd , and the phase field relaxation at
the solid surface Rr :

Rtotal = Rv + Rs + Rd + Rr

=

∫
dr

[η

2
(∂ivj + ∂jvi)

2
]

+

∫
dS

[
β

(
vslip

τ

)2
]

+

∫
dr

[
J2

M

]
+

∫
dS

[
φ̇2

Γ

]
,

where J = −∇μ is the diffusive current in the bulk and φ̇ is the material time
derivative of φ at the solid surface.

We calculate the time-averaged dissipation rates over a period with increased
wettability contrast r . Figure 7 is a plot of time averaged dissipation rates as a
function of increasing r from r = 2 to about 5.5 (as we vary θB

s from 60◦ to 27.6◦ and
θA
s from 120◦ to 152.4◦). It is clear that there is a rapid increase of energy dissipation

as the contrast ratio r increases but before a critical value rc (close to 3) is reached.
This rapid increase arises from the complete displacement of the blue fluid that is
more and more attracted to the A-type stripe and thus confined in a wedge of smaller
and smaller angle. The critical value rc corresponds to the onset of interface breaking.
Above the critical value, the system finds an alternative channel to reduce the energy
dissipation which would otherwise further increase. This is achieved by the interface
breaking. As one can see from figure 7, for r < rc (before interface breaking), the
dissipation due to slip Rs is much large than that due to diffusion Rd . For r > rc, Rs

decreases rapidly while Rd continues to increase, indicating strong diffusion.

3.3. Scaling for the energy dissipation

When immiscible fluid flows over a homogeneous surface with a velocity U , the
motion is steady and the rate of energy dissipation scales as R ∝ U 2 for small U ,
following the general rule governing the entropy production in a thermodynamic
process (essentially a Taylor expansion in U for positive definite R, see Landau &
Lifshitz 1997). On patterned surfaces, the contact line movement shows a stick–slip
behaviour and the interface profile oscillates in time, thus inducing extra dissipation.
We are interested in how the dissipation scales with the average velocity U for this
oscillatory case. The results in the previous section have indicated that the rate of
energy dissipation is also affected by the surface wettability contrast which leads to
two different energy dissipation regimes separated by a critical wettability contrast
ratio rc. We examine the capillary-wave-induced extra dissipation (Zhou & Sheng
1990) before the interface breaking. We calculate the rates of dissipation Rv , Rs , Rd ,
Rr and the total dissipation Rtotal for U = −0.05, θA

s = 102.4◦, and θB
s = 77.6◦.

Figure 8 shows that each of the four components of dissipation remains a constant
when the interface moves steadily in either the A-type region or the B-type region.
As the contact line moves across the boundary from the A-type to the B-type stripe,
it undergoes a fast slip due to the change in the surface property and there is a
significant jump in Rtotal , dominated by the contributions from Rv and Rs . This is
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Figure 7. Time-averaged dissipation rates R vs. the wettability contrast r .

physically understandable because a jump in Rv is generated by the capillary-wave
excitation at the fluid–fluid interface while a jump in Rs is generated by the rapid
slipping of the contact line.

To study the behaviour of the capillary-wave-induced extra dissipation, we subtract
the usual steady motion dissipation on a uniform surface (which scales as U 2) and
examine the scaling behaviour of the extra dissipation through time averaging. Our
results show that the rate of extra energy dissipation has certain universal behaviour
when the contrast ratio r is close to the critical value rc. Figure 9 shows the time
sequences (maximum shifted to t = 0) of the extra dissipation Rv (viscous dissipation)
and Rs (due to slip) for three different speeds U = −0.01, −0.0075 and −0.005 on a
surface with contrast ratio r = 2.6. The three profiles match almost perfectly, showing
that the capillary-wave-induced extra dissipation depends on the surface pattern only.
Physically, the capillary wave excitation arises from the change in the static wetting
property (contact angle) over the patterned surface and becomes independent of the
displacement speed when it approaches zero. The time-averaged dissipation over a
time period T (corresponding to the interface motion past one period of the surface
pattern λ) gives

1

T

∫ T

0

R(t) dt =

(
1

λ

∫ T

0

R(t) dt

)
λ

T
= c|U |, (3.1)

where c = 1/λ
∫ T

0
R(t)dt . Since R(t) decays very fast to zero away from the maximum

and is independent of U , c is therefore independent of U . Thus, the time-averaged
dissipation rates scale as Rv, Rs ∝ |U |.

We have also verified this linear U scaling relationship numerically for wettability
contrast r = 2.6. The time-averaged total rate of dissipation and all four components
are log-log plotted as functions of U in figure 10. It is shown that Rd , the rate of



70 X.-P. Wang, T. Qian and P. Sheng

100 200 300 400
0

0.5

1.0

1.5

t

45 50 55 60 65
0

10

20

30

40(a)

(b) (c)

x

z

45 50 55 60 65
0

0.5

1.0

1.5

x

R

Rtotal

Rv

Rs

Rd

Rr

Figure 8. (a) The interface profiles during the contact line slip across the boundary from
the A-type to the B-type stripe, and the corresponding rates of energy dissipation plotted as
function of the position of the contact point (b) and plotted as function of time (c).

dissipation due to diffusion, remains almost constant. However, the viscous dissipation
rate Rv and that due to slip Rs behave differently when U is close to zero. A numerical
estimation of the slopes confirms the scaling relation

Rv, Rs ∝ |U |

in the limit of small U . This behaviour arises from the inhomogeneity of the dissipation
in time. As U approaches zero, the dissipation is dominated by the A-to-B switch
associated with the fast contact line slip across the boundary from the A-type to
the B-type stripe. Averaging over a time period T then results in a dissipation rate
proportional to U , as expressed in equation (3.1). At intermediate contrast ratios
1 � r < rc, the moving contact line dissipation would appear to scale as Uα , with
1 < α � 2.

3.4. Effective properties of the patterned surface

As the period of the pattern λ becomes small enough, the patterned surface acts
effectively as a homogeneous surface. This requires the hydrodynamic relaxation of the
fluid–fluid interface to be much slower than its translation over the solid surface. As
shown in figure 4, the interfacial profile undergoes a periodic capillary-wave excitation
in the co-moving frame, induced by the jump in surface properties at the boundary
of different stripes. In addition, the time scale associated with this hydrodynamic
relaxation of the interface is well defined in the limit of small displacement speed (see
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figure 9). If this time scale becomes much longer than the time period T = λ/|U |,
then the interfacial profile can undergo very little change in each period and the
capillary-wave excitation is suppressed. That is, the interface is not able to respond
to the jump in surface properties. Instead, it keeps a nearly constant profile and
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moves at a nearly constant speed, as if over a homogeneous surface. It is interesting
to study the effective properties of the patterned surface in this regime, and to see
how they depend on the ratio a/b of the respective widths of the A-type and B-type
stripes. Figure 11 shows the simulation results obtained for a set of small periods of
the pattern (λ = 6.25, 3.125, 1.5625) with the fixed ratio a/b = 1. When the period
of the pattern is small enough, the interface can never fully relax to the stationary
profiles in the A-type and B-type regions. While the velocity of the contact line still
oscillates around the steady velocity U = −0.2, the oscillation amplitude decreases
with the decreasing period. In the case of λ = 1.5625, the moving interface is almost
vertical to the solid surfaces, with an effective dynamic contact angle close to 90◦. The
effective properties of the patterned surface can be tuned as well by the ratio a/b. As
shown in figure 12, when a/b is changed to 1/3, we have a moving interface with a
contact angle closer to that of the stationary interface in the B-type region (when it is
sufficiently wide). Similarly, for a/b = 3, we observe a moving interface closer to the
stationary one in the A-type region (when it is sufficiently wide). This suggests a way
to design and control the dynamic wetting properties of the surface by tuning the
period λ and the ratio a/b. The numerical results suggest that the effective contact
angle θe is approximately given by cos θe ≈ α cos θA

s + (1 − α) cos θB
s where α = a/λ.

For a patterned surface that effectively acts as a homogeneous surface, one can
derive the effective contact angle θe by a simple argument. For this purpose, we use
L(φ) = K∂nφ+∂γf s(φ)/∂φ defined at the solid surface, in which the contact angle and
the change of the fluid–solid interfacial free energy across the fluid–fluid interface are
both included. For gently curved interfaces, multiplying K∂nφ by ∂xφ and integrating
across the fluid–fluid interface along x yields∫

int

dx(K∂nφ)∂xφ =

∫
int

dφ(K∂mφ) cos θ,

where
∫

int
dx denotes integration across the fluid–fluid interface along x, and ∂m

means taking spatial derivative along the fluid–fluid interface normal m, with ∂nφ

approximated by ∂mφ cos θ . Here θ is the contact angle. From
∫

int
dφ(K∂mφ) =∫

int
dmK(∂mφ)2 = γ , we obtain

∫
int

dx(K∂nφ)∂xφ = γ cos θ . Multiplying ∂γf s(φ)/∂φ

by ∂xφ and integrating across the fluid–fluid interface along x yields∫
int

dx[∂γf s(φ)/∂φ]∂xφ =

∫
int

dφ[∂γf s(φ)/∂φ],

which equals γf s(φ+) − γf s(φ−) = �γf s , the change of the fluid–solid interfacial free
energy across the fluid–fluid interface. From the above relations, we obtain∫

int

dx[L(φ)∂xφ] =

∫
int

dx

[
K∂nφ +

∂γf s(φ)

∂φ

]
∂xφ = γ cos θ + �γf s, (3.2)

which reduces to the Young equation γ cos θs +�γf s = 0 for L(φ) = 0 in equilibrium,
with the static contact angle θs equalling θA

s and θB
s on the A-type and B-type stripes,

respectively.
The value of the integral

∫
int

dx[∂γf s(φ)/∂φ]∂xφ = �γf s alternates between

−γ cos θA
s and −γ cos θB

s as the interface moves over the patterned surface. For
sufficiently small period λ, the interface moves with a nearly constant velocity. This
is seen on the right panels of figure 11, where the velocity fluctuations are seen to
decrease in magnitude as λ decreases. Therefore, taking the time average of �γf s is
equivalent to averaging it over the position of the interface (or contact line) along the
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Figure 11. The interface profiles and contact-line velocities obtained for a set of decreasing
periods of the pattern: λ = 6.25 (a), 3.125 (b), and 1.5625 (c).
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Figure 13. (a–h) Equally spaced time sequence plot of a droplet (with initial diameter 8) of
the blue fluid (the A component). The wettability contrast for the droplet fluid over the A-type
and B-type stripes of the patterned surface is low. (i) The time variations of the convection
flux (blue line) and the negative of the diffusion flux (red line) at the boundary of the B-type
stripe crossed. Convection clearly dominates.

surface, which is given by

1

λ

[
a
(

−γ cos θA
s

)
+ b

(
−γ cos θB

s

)]
= −γ

[
α cos θA

s + (1 − α) cos θB
s

]
. (3.3)

Meanwhile, since the shape of the interface changes very little in time, the effective
contact angle θe can be obtained from

∫
int

dx(K∂nφ)∂xφ = γ cos θe, which is nearly
constant because the phase field φ is translated by a nearly constant velocity. For
slow displacement, the time average of

∫
int

dx[L(φ)∂xφ] should approach zero. That
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Figure 14. Same as figure 13, but plotted for a high wettability contrast with θA
s = 152.4◦ at

the A-type stripes and θB
s = 27.6◦ at the B-type stripes. Compared to figure 13, a qualitatively

different behaviour is obtained, as the diffusion is now responsible for most of the droplet
fluid (the A component) transport across the high energy part (the B-type green section) of
the patterned surface. In contrast to that in figure 13, in (i) now diffusion flux carries more of
the droplet fluid across the high-energy section of the surface.

is, the sum of γ cos θe and the time average of �γf s in equation (3.3) should approach
zero, i.e.

γ cos θe − γ
[
α cos θA

s + (1 − α) cos θB
s

]
→ 0,

which yields

cos θe → α cos θA
s + (1 − α) cos θB

s .
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That means the patterned surface acts as a homogeneous surface at which the effective
static contact angle cos θe

s is given by

cos θe
s = α cos θA

s + (1 − α) cos θB
s . (3.4)

Note that our specific choice of γf s(φ) leads to the disappearance of a transition layer
(of finite thickness ∼ ξ ) at the solid surface. As a consequence, the excess free energy
per unit area is given by γf s(φ±) at the surface, and the Young equation takes the
simple form of γ cos θs + �γf s = 0. This is still true for the patterned surfaces and
results in the effective contact angle θe

s in equation (3.4).

3.5. Diffusion-dominated motion of a droplet

The effects of interface breaking and contact line jumping on an interface moving over
a patterned surface are further investigated by varying the relative volume fraction of
the two fluid components. Consider a droplet (with diameter 8) of the A component
(coloured blue) surrounded by the B component (coloured red). The droplet is initially
centred at x = 50 and is pushed to the left by an external force, moving with the
velocity U = −0.8. In the case of low contrast of wettability (θA

s = 109.4◦ at the
A-type stripes of the surface and θB

s = 70.6◦ at the B-type stripes), the droplet can
move from one A-type stripe to the next by crossing a B-type stripe in between with
only a slight change of shape (figure 13).

However, for significantly increased wettability contrast (θA
s = 152.4◦ at the A-type

stripes and θB
s = 27.6◦ at the B-type stripes), the droplet of the A component is no

longer able to move across the B-type stripe as a whole, because the droplet fluid
is strongly repelled by the B-type stripe, and thus is unable to fully displace the
surrounding fluid that is strongly attracted to that section of the surface (figure 14).
Instead, the droplet fluid is transported across the B-type stripe by diffusion above
that part of the patterned surface. A plot of the diffusion and convection fluxes at
the boundary of the B-type stripe that is crossed shows that in the low contrast case,
convection dominates over diffusion, while in the high contrast case the reverse is
true.

4. Conclusion
We have presented numerical results of contact line dynamics on chemically

patterned surfaces. The simulations are performed based on a diffusive interface
model together with the generalized Navier boundary conditions. The numerical
results revealed many interesting phenomena of the moving contact line on patterned
surfaces. We investigated how the extra dissipation induced by the stick–slip motion
of the contact line scales with the driving velocity U . The dependence of the effective
properties on the geometry of the patterned surfaces suggests a way to design and
control the dynamic wetting properties of the surfaces by tuning the period and the
ratio of the pattern. Increasing the wettability contrast leads to interface breaking
in which diffusion becomes dominant. It is important to note that these phenomena
cannot be obtained computationally without the consideration of a diffuse interface
in the present model, in which the uncompensated Young stress acts together with
the bulk diffusion and surface relaxation of the phase field describing the interface. In
particular, a sharp interface description (in which the interface is impenetrable) would
yield a very different dynamic behaviour. It has been shown that the present model
can be derived from the principle of minimum energy dissipation (Qian et al. 2006), a
principle that underlies all linear dissipative responses in irreversible thermodynamic
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processes (Onsager 1931a,b; Onsager & Machlup 1953). In order to minimize the
total rate of energy dissipation, for example, the high wettability contrast case calls
for the breaking of the interface via diffusion, a route present in our model but absent
if the interface is modelled to be impenetrable. The bulk diffusion is coupled with
the surface relaxation and slipping, governed respectively by the boundary conditions
(2.9) and (2.10), which have been shown to be the consequence of the minimum
energy dissipation principle (Qian et al. 2006).

This work is partially supported by the Hong Kong RGC grant HKUST 604803,
the RGC Central Allocation Grant CA05/06.SC01 and the Croucher Foundation
Grant Z0138.

REFERENCES

Barrat, J.-L. & Bocquet, L. 1999 Large slip effect at a nonwetting fluid–solid interface. Phys. Rev.
Lett. 82, 4671.

Blake, T. D. & Haynes, J. M. 1969 Kinetics of liquid/liquid displacement. J. Colloid Interface Sci.
30, 421–423.

Briant, A. J. & Yeomans, J. M. 2004 Lattice Boltzmann simulations of contact line motion. II.
Binary fluids. Phys. Rev. E 69, 031603.

Cahn, J. W. & Hilliard, J. E. 1958 Free energy of a nonuniform system. I. Interfacial free energy.
J. Chem. Phys. 28, 258–267.

Chella, R. & Vinals, J. 1996 Mixing of a two-phase fluid by cavity flow. Phys. Rev. E 53, 3832–3840.

Chen, H. Y., Jasnow, D. & Vinals, J. 2000 Interface and contact line motion in a two phase fluid
under shear flow. Phys. Rev. Lett. 85, 1686–1689.

Cubaud, T. & Fermigier, M. 2004 Advancing contact lines on chemically patterned surfaces. J.
Colloid Interface Sci. 269, 171–177.

Darhuber, A. A., Troian, S. M., Miller, S. M. & Wagner, S. 2000 Morphology of liquid
microstructures on chemically patterned surfaces. J. Appl. Phys. 87, 7768.

Dussan V., E. B. & Davis, S. H. 1974 On the motion of a fluid–fluid interface along a solid surface.
J. Fluid Mech. 65, 71–95.

Dussan V., E. B. 1979 On the spreading of liquids on solid surfaces: static and dynamic contact
lines. Annu. Rev. Fluid Mech. 11, 371.

de Gennes, P. G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827.

Gau, H., Herminghaus, S., Lenz, P. & Lipowsky, R. 1999 Liquid morphologies on structured
surfaces. Science 283, 46–49.

Hocking, L. M. 1977 A moving fluid interface. Part 2. The removal of the force singularity by a
slip flow. J. Fluid Mech. 79, 209–229.

Huh, C. & Mason, S. G. 1977 The steady movement of a liquid meniscus in a capillary tube. J.
Fluid Mech. 81, 401–419.

Huh, C. & Scriven, L. E. 1971 Hydrodynamic model of steady movement of a solid/liquid/fluid
contact line. J. Colloid Interface Sci. 35, 85–101.

Jacqmin, D. 2000 Contact-line dynamics of a diffuse fluid interface. J. Fluid Mech. 402, 57–88.

Kusumaatmaja, H., Lopolds, J., Dupuis, A. & Yeomans, J. M. 2006 Drop dynamics on chemically
patterned surfaces. Europhys. Lett. 73, 740–746.

Kuksenok, O., Jasonw, D., Yeomans, J., & Balazs, A. 2003 Periodic droplet formation in chemically
patterned microchannels. Phys. Rev. Lett. 91, 108303.

Landau, L. D. & Lifshitz, E. M. 1997 Statistical Physics (Part 1). Oxford University Press.

Luo, X, Wang, X. P., Qian, T. Z. & Sheng, P. 2006 Moving contact line over undulating surfaces.
Solid State Commun. 139 623–629.

Onsager, L. 1931a Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426.

Onsager, L. 1931b Reciprocal relations in irreversible processes. II. Phys. Rev. 38, 2265–2279.

Onsager, L. & Machlup, S. 1953 Fluctuations and irreversible processes. Phys. Rev. 91, 1505–1512.

Pismen, L. M. & Pomeau, Y. 2000 Disjoining potential and spreading of thin liquid layers in the
diffuse-interface model coupled to hydrodynamics. Phys. Rev. E 62, 2480–2492.



78 X.-P. Wang, T. Qian and P. Sheng

Qian, T. Z., Wang, X. P. & Sheng, P. 2003 Molecular scale contact line hydrodynamics of immiscible
flows. Phys. Rev. E 68, 016306.

Qian, T. Z., Wang, X. P. & Sheng, P. 2004 Power-law slip profile of the moving contact line in
two-phase immiscible flows. Phys. Rev. Lett. 93, 094501.

Qian, T. Z., Wang, X. P. & Sheng, P. 2006 A variational approach to the moving contact line
hydrodynamics, J. Fluid Mech. 564, 333–360.

Seppecher, P. 1996 Moving contact lines in the Cahn-Hilliard theory. Intl J. Engng Sci. 34, 977–992.

Zhou, M. Y. & Sheng, P. 1990 Dynamics of immiscible-fluid displacement in a capillary tube. Phys.
Rev. Lett. 64, 882–885.




